‘Silent’ olfactory bulb mitral cells emerge from common feature subtraction.
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Background Neural Dynamics
1. Recently [1| performed blind whole-cell patch clamp of MCs. 7_))'\ = A+ (y—Ax+ Oéb)/(fgﬂ: (MC voltage)
2. Spontaneous and odour-evoked activity were inversely related. , | |
3. Cells with high baseline activity were often inhibited by odours. b = —b — (1 — air(¢)) <A (MC baseline)
4. *Silent cells’ had low baselines while highly excitable by odours. T,V = —V + Al (GC voltage)
Model x = |v—Bls/v (GC firing rate)
1. Time discretized into O(1 sec.) bouts ¢ € 1... V. =
2. Each bout contains either odour or air. 0 S OW I I I | I | I l I
3. Odours are sparse, high-dimensional. L =
. QO o
4. Odour; = unique features x; + common features c;. o 2 1
5. Unique features are generated independently per bout. ‘E 5 5
6. Common features change slowly over bouts. £ =
7. Animal observes dense, low-D receptor activations yy. = 5.
8. Animal MAP infers unique features from receptor history: T O.FTFT—?‘FF:::HF:
argimax p(th’h---aYt)' 5_2_ | | |
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. Common features c; are high-D but are not inferred.

. They are accounted for through their effect b; on receptors.
. Projection to low-D receptor space suggests Gaussian dynamics.
. MC baselines reflect negative of expected receptor activations.

. In odour, baseline removes component due to common features.
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. Unique features remain, infered by fast MC/GC dynamics a la |2].
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e Unique odour features. |

e Generated independently per bout. Data vs. Model
e Sparse, high-dimensional.
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e Liffect of high-dimensional
common features c; on receptors. <1 Hz > 1 H7
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e Low-dimensional projection suggests
dense, Gaussian dynamics.
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